Algorithms
  • Introduction
  • Algorithms
    • Insertion Sort
    • Shell Sort
    • Selection Sort
    • Heap Sort
    • Merge Sort
    • Quick Sort
    • Dual Pivot QuickSort
    • Radix Exchange Sort
  • Data Structures
    • Basic Datastructures
      • Table or Array
      • List
      • Linked List
      • Stack
      • Queue
      • Deque
      • Dictionary
      • HashTables
    • Trees
      • Tree
      • Binary Search Tree
      • Heap
      • Red-Black Trees
      • Splay Trees
      • Randomized Search Trees
    • Dynamic Programming
      • Fibonacci
      • Knapsack
      • Optimal Binary Search Trees
      • Longest Common Sub sequence
    • External Data Structures
      • B-Trees
      • Variants
    • Multi-dimensional Data Structures
      • Point-Region Quadtree
      • Point-Quadtrees
    • Priority Queues
      • Binomial Queues
  • Graphs
    • Basics
    • Depth First Search
    • Applications of Depth First Search
    • Breadth First Search
    • Shortest Paths
    • Transitive Closure
    • Flow Networks
    • Matching
  • Strings
    • Data Structures for Strings
      • Tries
        • Binary Tries
        • Multiway Trie
        • Patricia Tries
      • Variable Length-code
        • Elias Code
        • Gamma Code
        • Fibonacci Code
      • Huffmancode
      • Ternary Search Tree
    • Searching in Strings
      • Prefix Function
      • Knuth-Morris-Pratt
      • Boyer-Moore
      • Monte-Carlo Algorithms
      • Karp-Rabin
      • Automatons
      • Shift-AND
    • Indexing Text
      • Suffix Trees
      • Suffix Arrays
      • Search Engines & Inverted Files
  • P and NP
    • Introduction
    • SAT and 3-SAT
    • Graph Problems
    • Problems with Collections
    • Networks
    • Data storage
  • Metaheuristics
    • Trajectory Methods
      • Local Search
      • Simulated Annealing
      • Tabu Search
    • Population Based
      • Ant Colony
      • Evolutionary Computation
  • Sources
Powered by GitBook
On this page

Was this helpful?

  1. Metaheuristics
  2. Trajectory Methods

Tabu Search

Tabu Search is a heuristic that will try to find the optimal solution. It does this by using a Tabu List, where it keeps track of the most recently visited solutions and forbids moves toward them. By picking neighbor solutions, we will thus only get solutions that we did not visited before and thus improving our final result.

Algorithm

  1. Pick an initial solution and reset our "tabu list"

  2. while(termination not met)

    1. Find the neighbor solutions that are not taboo, and check how good these are

    2. Pick the best neighbor and put the previous solution in the taboo list

    3. If the new solution is better, remember it

PreviousSimulated AnnealingNextPopulation Based

Last updated 6 years ago

Was this helpful?